extrémal - ορισμός. Τι είναι το extrémal
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι extrémal - ορισμός

POINT ON A GRAPH WHERE ALL DERIVATIVES OR PARTIAL DERIVATIVES ARE ZERO
Horizontal inflection point; Horizontal point of inflection; Stationary value; Extremal; Extremals; Stationary points
  • A graph in which local extrema and global extrema have been labeled.
  • The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are [[inflection point]]s.

Stationary point         
In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name).
stationary point         
¦ noun Mathematics a point on a curve where the gradient is zero.
Epoch of Extreme Inundations         
HYPOTHETICAL EPOCH
User:Andreygeo/Epoch of Extremal Inundations; Epoch of Extremal Inundations
The Epoch of Extreme Inundations (EEI) is a hypothetical epoch during which four landforms in the Pontic–Caspian steppe—marine lowlands (marine transgressions), river valleys (outburst floods), marine transgressions (thermocarst lakes) and slopes (solifluction flows)—were widely inundated.The dynamics of landscape components and inner marine basins of Northern Eurasia over the past 130,000 years.

Βικιπαίδεια

Stationary point

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name).

For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero).

Stationary points are easy to visualize on the graph of a function of one variable: they correspond to the points on the graph where the tangent is horizontal (i.e., parallel to the x-axis). For a function of two variables, they correspond to the points on the graph where the tangent plane is parallel to the xy plane.